

MACHAKOS UNIVERSITY

BUILDING & CIVIL ENGINEERING DEPARTMENT

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

THIRD YEAR EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECV 206: SURVEYING II

DATE: DECEMBER 2020

TIME: 2 HOURS

INSTRUCTIONS

- This paper comprises of five questions. Answer three questions
- Question one is compulsory and carry's 30 marks
- Use well labeled and neat diagrams where applicable.
- Answer any other two questions

Question 1 (30 Marks)

- a. Briefly discuss the three type's theodolites (6 Marks)
- b. Define the following terms with regards to theodolite use (6 marks)
 - a) Line of collimation
 - b) Face left condition
 - c) Plunging the telescope
 - d) Double centering
- c. State at least four simple targets often used in control surveys and setting out (4 Marks)
- d. What are some of the mistakes that may be encountered in theodolite angle measurements due to carelessness of the observer (5 Marks)
- e. Angle of elevation measured for a tower erected over a building from a point of an instrument located on the ground was 12° and 9° for the top and bottom of the tower respectively. The height of the tower is 9 m. If the angle at depression of plinth level of the building from the same instrument is 4°, calculate the height of the building. (7 Marks)

f. A Civil engineering student from Machakos University noticed that the theodolite she was using had a parallax error, explain briefly how she can eliminate the parallax before measuring angles. (2 Marks)

Question 2 (20 Marks)

An EDM slope distance AB is determined to be 561.276 m. The EDM instrument is 1.820 m above station A, and the prism is 1.986 m above station B. The EDM instrument is mounted on a theodolite whose optical center is 1.720 m above the station. The theodolite was used to measure the vertical angle (+6°21'38") to a target on the prism pole; the target is 1.810 m above station B. With help of a diagram compute both the horizontal distance AB and the elevation of Station B, if the elevation of station A=186.275

Question 3 (20 Marks)

a. With the help of a sketch show that in polar computation given two-dimensional coordinates (N₁,E₁) of a point P₁,and the distance L and bearing α of another point P₂ from P₁,that the coordinates (N₂,E₂) of P₂ are given by; (6 Marks)

$N_2 = N_1 + L \cos \alpha$ and $E_2 = E_1 + L \sin \alpha$

- b. Hence compute the Northing and Easting of point P₂ given the coordinates of the point P₁ are N₁=+907350.85 and E₁= +183416.94 and α =112°31'00'' (4 Marks)
- c. Also using your sketch in a above show that for joint computation given coordinates (N₁,E₁) of a point P₁ and coordinates (N₂,E₂) of P₂ the distance and bearing of P₂ from P₁ is given by. (4 Marks)

Tan = $\Delta E / \Delta N$ and L= $\Delta N / Cos \alpha = \Delta E / Sin \alpha$

d. And hence compute the bearing and distance of a point P₂ from P₁ given that their Northings and Eastings are as follows (6 Marks)

Point	Northings	Eastings	
P ₁	+26759.89	+686084.12	
P ₂	+27103.97	+686406.51	

Question 4 (20 Marks)

With the help of a sketch determine the gradient from a point A to B from the following observations made with a fixed hair tachometer fitted with an anallactic lense the constant of the instrument being 100.

Reading	Bearing	Reading on stadia hair (m)		Reading on axial hair (m)	Vertical angle
To A	345°	0.75	2.12	1.435	+15°
То В	75°	0.625	3.05	1.835	-10°

Question 5 (20 Marks)

A civil engineer wanted to determine the elevation of top Q of a signal on a hill observations were made from two points P and R. All the three points are in the same vertical plane. The distance between P and R is 120m height of the signal is 4 m. With the help of a sketch find out R.I of the foot of the signal.

	From P=25°35'		
Angle of Elevation to Q	From R=15°5'		
	From P=2.755 m		
Staff Reading at BM	From R=3.855 m		
R.L of BM =105.42 m			