MACHAKOS UNIVERSITY

University Examinations for 2019/2020Academic Year
 SCHOOL OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
 SECOND YEAR SECOND SEMESTER EXAMINATION FOR

 BACHELOR OF SCIENCE (CIVIL ENGINEERING)

 BACHELOR OF SCIENCE (CIVIL ENGINEERING)
 ECV 207: FLUID MECHANICS II

DATE: 10/12/2020
TIME: 8.30-10.30 AM

INSTRUCTIONS

Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS)

a) Define the following terms as used in fluid mechanics:
i. Dimensional Analysis (3 marks)
ii. Boundary layer (3 marks)
iii. Notch (3 marks)
iv. Co-efficient of discharge (3 marks)
b) State Four assumptions of Bernoulli's theorem (4 marks)
c) A jet of water is discharged through a nozzle with effective diameter d of 75 mm and a velocity v off $22.5 \mathrm{~m} / \mathrm{s}$. Determine the power of the issuing jet.
(11 marks)
d) A siphon has a uniform circular bore of 75 mm diameter and consists of a bent pipe with its crest 1.8 m above water level discharging into the atmosphere at a level 3.6 m below water level. Find the velocity of flow, the discharge and absolute pressure at crest level if the atmospheric pressure is equivalent to 10 m of water. Neglect losses due to friction.
(13 marks)

QUESTION TWO (20 MARKS)

a) State the Newton's second law of motion
b) A 800 mm main carries water under a head of 35 m with velocity of flow of $3.5 \mathrm{~m} / \mathrm{s}$. The main is fitted with a bend, which turns the axis through 70°. Determine the resultant force.
(12 marks)

QUESTION THREE (20 MARKS)

a) Derive a formula for the time of emptying a vertical cylindrical tank through an orifice in the bottom.
b) If such a tank is 2.5 m diameter and the orifice in the bottom is 65 mm diameter, find the initial height of water above the orifice in order that $3.5 \mathrm{~m}^{3}$ of water will flow out in 400 seconds. Take C_{d} for the orifice as 0.75 .

QUESTION FOUR (20 MARKS)

a) Determine the conditions for maximum transmission of power through a pipe assuming loss of head by friction only.
b) A pipeline is 1820 m long and 0.370 m in diameter, and supply head at the inlet is 250 m . A nozzle with an effective diameter of 45 mm is fitted at the discharge end and has a coefficient of velocity 0.90 . If f for the pipe is 0.0055 , calculate: the velocity of the jet, the discharge and power of the jet.

QUESTION FIVE (20 MARKS)

a) Differentiate between laminar and turbulent flows
b) A jet of water 24 mm in diameter, moving with a velocity of $5.5 \mathrm{~m} / \mathrm{s}$ strikes a flat plate at an angle of 30° to the normal of the plate. If the plate itself is moving at $1.25 \mathrm{~m} / \mathrm{s}$ and in the direction normal to the surface, calculate:
i. Normal force exerted on the plate
ii. Work done
iii. Efficiency
(4 marks)

