MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS STATISTICS AND ACTUARIAL SCIENCE

SECOND YEAR FIRST SEMESTER EXAMINATION FOR
DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING
ECU 0102: ENGINEERING MATHS III
DATE: 2/5/2019
TIME: 8:30-10:30 AM

INSTRUCTIONS:

Answer question ONE and any other TWO questions
QUESTION ONE (COMPULSORY) (30 MARKS)
a) Differentiate with respect to x
i) $y=\cos (2 x+3)^{4}$
(3 marks)
ii) $x^{2}+y^{2}+2 x y+x=6$
b) Differentiate $y=\cos 2 x$ from the first principles
c) The parametric equations of a curve

$$
\begin{equation*}
y=3 \sin \theta-\sin ^{2} \theta \quad x=\cos ^{2} \theta \tag{8marks}
\end{equation*}
$$

Find $\frac{d y}{d x} \quad$ and $\frac{d^{2} y}{d x^{2}} \quad$ at $\quad \theta=\frac{\pi}{6}$
d) If $z=2 e^{t} \cos 5 t \quad$ show that $\frac{d^{2} z}{d x^{2}}-8 \frac{d z}{d x}+41 z=0$
e) Find the equation of the tangent and the normal to the curve

$$
y=3 x^{3}-2 x^{2}+3 x-1 \quad \text { at point }(2,5)
$$

QUESTION TWO (20 MARKS)

a) If $v=2 x^{2}+4 x y+y^{2}$

Determine
i) $\frac{\delta v}{\delta x}$
ii) $\frac{\delta^{2} v}{\delta y^{2}}$
ii) $\frac{\delta^{2} v}{\delta y \delta x}$
b) Given that $y=e^{2 x} \ln x$ find $\frac{d y}{d x}$
c) Differentiate with respect to x
i) $y=x^{2} \cos x \quad$ (3 marks)
ii) $y=\cos (2 x-1)$
iii) $y=\frac{x^{3}}{\sin x}$
(2 marks)
iv) $y=6 e^{x^{2}+2}$
(3 marks)

QUESTION THREE (20 MARKS)

a) Given the function $y=e^{2 x}$ in $5 x$ obtain $\frac{d y}{d x}$ (5 marks)
b) Use logarithmic differentiation to obtain the differential coefficient of the functions

$$
\begin{equation*}
\text { i) } \quad y=x^{4} e^{3 x} \tan x \tag{5marks}
\end{equation*}
$$

ii) $y=\frac{x^{3} \cos 2 x}{\sin 3 x}$
c) Obtain the Differential co efficient of the function

$$
\begin{equation*}
y=x^{3}+y^{3}+3 x y^{2}=8 \tag{5marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a) Given $x=3 \cos \theta-\cos ^{3} \theta$ and $y=3 \sin \theta-\sin ^{3} \theta$

Express $\frac{d y}{d x} \quad$ and $\frac{d^{2} y}{d x^{2}} \quad$ in terms of θ
b) If $y=x+3 x^{2}-x^{3}$ Find $\frac{d y}{d x}$ at $\mathrm{x}=0$
c) Differentiate with respect to x

$$
\begin{equation*}
y=\sin ^{-1} 5 x \tag{5marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a) Find the stationary points and points of reflection on the graph of the function $y=2 x^{3}-5 x^{2}+4 x-1$
b) The parametric equations of a function are given by
$y=2 \sin ^{3} \theta$ and $x=2 \cos ^{3} \theta \quad$ Find the equation of the normal and the tangent at which $\theta=\frac{\pi}{4}$
c) If $I=\frac{V}{R} \quad$ and $V=250$ volts and $R=50 \mathrm{ohms}$ find the change in I resulting from an increase of 1 volt in V and an increase of 0.5 ohms in R

