

MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS STATISTICS AND ACTUARIAL SCIENCE

SECOND YEAR FIRST SEMESTER EXAMINATION FOR

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

ECU 0102: ENGINEERING MATHS III

DATE: 2/5/2019

TIME: 8:30 – 10:30 AM

INSTRUCTIONS:

Answer question ONE and any other TWO questions

QUESTION ONE (COMPULSORY) (30 MARKS)

a)	Differentiate with respect to x	

i)
$$y = cos(2x+3)^4$$
 (3 marks)

ii)
$$x^2 + y^2 + 2xy + x = 6$$
 (4 marks)

b) Differentiate y = cos2x from the first principles (5 marks)

c) The parametric equations of a curve

 $y = 3sin\theta - sin^2\theta$ $x = cos^2\theta$

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{6}$ (8 marks)

d) If
$$z = 2e^t \cos 5t$$
 show that $\frac{d^2z}{dx^2} - 8\frac{dz}{dx} + 41z = 0$ (5 marks)

e) Find the equation of the tangent and the normal to the curve

$$y = 3x^3 - 2x^2 + 3x - 1$$
 at point (2,5) (5 marks)

QUESTION TWO (20 MARKS)

a) If
$$v = 2x^2 + 4xy + y^2$$

Determine
i) $\frac{\delta v}{\delta x}$ (2 marks)
ii) $\frac{\delta^2 v}{\delta y^2}$ (2 marks)
ii) $\frac{\delta^2 v}{\delta y \delta x}$ (3 marks)
b) Given that $y = e^{2x} lnx$ find $\frac{dy}{dx}$ (3 marks)
c) Differentiate with respect to x
i) $y = x^2 cosx$ (3 marks)
ii) $y = cos(2x - 1)$ (2 marks)
iii) $y = \frac{x^3}{sinx}$ (2 marks)
iv) $y = 6e^{x^2+2}$ (3 marks)

QUESTION THREE (20 MARKS)

a)	Given	the function $y = e^{2x} in 5x$	obtain	$\frac{dy}{dx}$	(5 marks)	
b)	Use logarithmic differentiation to obtain the differential coefficient of the functions					
	i)	$y = x^4 e^{3x} tanx$			(5 marks)	
	ii)	$y = \frac{x^3 \cos 2x}{\sin 3x}$			(5 marks)	

c) Obtain the Differential co efficient of the function

$$y = x^3 + y^3 + 3xy^2 = 8$$
 (5 marks)

QUESTION FOUR (20 MARKS)

a) Given
$$x = 3\cos\theta - \cos^3\theta$$
 and $y = 3\sin\theta - \sin^3\theta$
Express $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of θ (10 marks)

b) If
$$y = x + 3x^2 - x^3$$
 Find $\frac{dy}{dx}$ at x=0 (5 marks)

c) Differentiate with respect to x

$$y = \sin^{-1}5x \tag{5 marks}$$

QUESTION FIVE (20 MARKS)

a) Find the stationary points and points of reflection on the graph of the function

$$y = 2x^3 - 5x^2 + 4x - 1 \tag{6 marks}$$

b) The parametric equations of a function are given by

 $y = 2sin^3\theta$ and $x = 2cos^3\theta$ Find the equation of the normal and the tangent at which $\theta = \frac{\pi}{4}$ (10 marks)

c) If $I = \frac{V}{R}$ and V = 250 volts and R = 50 ohms find the change in I resulting from an increase of 1 volt in V and an increase of 0.50 hms in R

(4 marks)