• Login
    View Item 
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical Analysis and Data Display

    Thumbnail
    View/Open
    Full Text (18.35Mb)
    Date
    2015
    Author
    Heiberger, Richard M.
    Holland, Burt
    Metadata
    Show full item record
    Abstract
    Students seeking master’s degrees in applied statistics in the late 1960s and 1970s typically took a year-long sequence in statistical methods. Popular choices of the course textbook in that period prior to the availability of high-speed computing and graphics capability were those authored by Snedecor and Cochran (1980) and Steel and Torrie (1960). By 1980, the topical coverage in these classics failed to include a great many new and important elementary techniques in the data analyst’s toolkit. In order to teach the statistical methods sequence with adequate coverage of topics, it became necessary to draw material from each of four or five text sources. Obviously, such a situation makes life difficult for both students and instructors. In addition, statistics students need to become proficient with at least one high-quality statistical software package. This book Statistical Analysis and Data Display can serve as a standalone text for a contemporary year-long course in statistical methods at a level appropriate for statistics majors at the master’s level and for other quantitatively oriented disciplines at the doctoral level. The topics include concepts and techniques developed many years ago and also a variety of newer tools. This text requires some previous studies of mathematics and statistics. We suggest some basic understanding of calculus including maximization or minimization of functions of one or two variables, and the ability to undertake definite integrations of elementary functions. We recommend acquired knowledge from an earlier statistics course, including a basic understanding of statistical measures, probability distributions, interval estimation, hypothesis testing, and simple linear regression.
    URI
    http://ir.mksu.ac.ke/handle/123456780/6032
    Collections
    • School of Pure & Applied Sciences [197]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV