Show simple item record

dc.contributor.authorDzupire, Nelson Christopher
dc.contributor.authorNgare, Philip
dc.contributor.authorOdongo, Leo
dc.date.accessioned2019-05-08T07:27:31Z
dc.date.available2019-05-08T07:27:31Z
dc.date.issued2018
dc.identifier.issn0972-3617
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4409
dc.description.abstractIn this study we develop a Lévy process driven Ornstein-Uhlenbeck daily temperature model. The model takes into account a time dependent speed of mean reversion. It is statistically demonstrated that historical data and temperature differences are not normally distributed and hence we have argued against modeling temperature residuals as a Wiener process rather we have used the normal inverse Gaussian distribution which can ably describe skewed and heavy tailed data. Neural networks have been applied to estimate parameters of the detrended and deseasonalized temperature data because there is no prior knowledge on the nature of the function that describes the speed of mean reversion in the modelen_US
dc.language.isoen_USen_US
dc.publisherPushpa Publishing Houseen_US
dc.subjectLévy processen_US
dc.subjectOrnstein-Uhlenbecken_US
dc.subjectMean reversionen_US
dc.subjectWiener processen_US
dc.subjectNormal inverse Gaussianen_US
dc.subjectNeural networksen_US
dc.subjectDeseasonalizeden_US
dc.subjectDetrendeden_US
dc.subjectTemperatureen_US
dc.subjectResiduals.en_US
dc.titleLÉVY PROCESS BASED ORNSTEIN-UHLENBECK TEMPERATURE MODEL WITH TIME VARYING SPEED OF MEAN REVERSIONen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record