Show simple item record

dc.contributor.authorIrakoze, I.
dc.contributor.authorIkpe, Dennis C.
dc.contributor.authorNgare, Philip
dc.date.accessioned2019-05-08T07:35:11Z
dc.date.available2019-05-08T07:35:11Z
dc.date.issued2018
dc.identifier.issn0973-0176
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4411
dc.description.abstractThe task of jointly estimating an optimal portfolio and bank capital adequacy ratio under model uncertainties is a real and challenging problem to portfolio managers in the banking industry. In this paper, we investigate the problem of optimal portfolio choice of an ambiguity averse portfolio manager (AAPM) with an obligation to continuously meet her bank’s capital adequacy requirements as specified in the BASEL III banking agreement. This is carried out through a stochastic modelling approach,requiringmodelspecificationuncertaintiesonthreecategoriesofabank’s balance sheet items-assets, capital and liabilities processes driven by independent Brownian motions. We prove the dynamic programming principle and derive the corresponding Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, leading to a robust capital adequacy ratio and an optimal portfolio selection. We conclude by looking at some numerical applicationsen_US
dc.language.isoen_USen_US
dc.publisherResearch India Publicationsen_US
dc.subjectModel Uncertaintyen_US
dc.subjectOptimal Portfolioen_US
dc.subjectBanking Capital Adequacyen_US
dc.subjectRobust Management.en_US
dc.titleRobust Optimal Portfolio and Bank Capital Adequacy Managementen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record