Show simple item record

dc.contributor.authorFranke, Jurgen
dc.contributor.authorNyarige, Euna Gesare
dc.date.accessioned2019-07-30T12:30:30Z
dc.date.available2019-07-30T12:30:30Z
dc.date.issued2019
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4673
dc.description.abstractWe consider the residual-based or naive bootstrap for functional autoregressions of order 1 and prove that it is asymptotically valid for, e.g., the sample mean and for empirical covariance operator estimates. As a crucial auxiliary result, we also show that the empirical distribution of the centered sample innovations converges to the distribution of the innovations with respect to the Mallows metricen_US
dc.language.isoenen_US
dc.publisherarXiv preprinten_US
dc.subjectSample innovationsen_US
dc.subjectFunctional time seriesen_US
dc.subjectFunctional autoregressionen_US
dc.subjectBootstrapen_US
dc.subjectAutoregressive Hilbertian modelen_US
dc.titleA residual-based bootstrap for functional autoregressionsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record