Show simple item record

dc.contributor.authorFranke, Jürgen
dc.contributor.authorMwita, Peter N.
dc.contributor.authorWang, Weining
dc.date.accessioned2019-08-16T07:06:42Z
dc.date.available2019-08-16T07:06:42Z
dc.date.issued2014
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4735
dc.description.abstractWe consider the problem of estimating the conditional quantile of a time series fYtg at time t given covariates Xt , where Xt can either exogenous variables or lagged variables of Yt . The conditional quantile is estimated by inverting a kernel estimate of the conditional distribution function, and we prove its asymptotic normality and uniform strong consistency. The performance of the estimate for light and heavy-tailed distributions of the innovations are evaluated by a simulation study. Finally, the technique is applied to estimate VaR of stocks in DAX, and its performance is compared with the existing standard methods using backtesting.en_US
dc.language.isoen_USen_US
dc.subjectConditional quantileen_US
dc.subjectKernel estimateen_US
dc.subjectQuantile autoregressionen_US
dc.subjectTime seriesen_US
dc.subjectUniform consistencyen_US
dc.subjectValue-at-risken_US
dc.titleNonparametric Estimates for Conditional Quantiles of Time Seriesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record