Show simple item record

dc.contributor.authorMwita, Peter Nyamuhanga
dc.date.accessioned2019-08-19T07:28:36Z
dc.date.available2019-08-19T07:28:36Z
dc.date.issued2010
dc.identifier.issn2006-9731
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4739
dc.description.abstractThis paper considers the estimation of extreme quantile autoregression function by using a parametric model. We combine direct estimation of quantiles in the middle region with that of extreme parts using the model and results from extreme value theory (EVT). The volatility used to scale the residuals is estimated indirectly, without estimating conditional mean, using the conditional quantile (CQ) range. The estimators are found to be consistent. A small simulation study carried out shows that the estimator of the volatility function converges to the true function over a range of distributional errors. Finally, the T-periods ahead extreme quantile autoregression function is given.en_US
dc.language.isoen_USen_US
dc.publisherAfrican Journal of Mathematics and Computer Science Researchen_US
dc.subjectQuantileen_US
dc.subjectAutoregressionen_US
dc.subjectValue-at-risken_US
dc.subjectARCHen_US
dc.subjectExtreme value theoryen_US
dc.subjectConsistencyen_US
dc.subjectAsymptotic normalityen_US
dc.titleEstimation of T- period’s ahead extreme quantile autoregression functionen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record