Show simple item record

dc.contributor.authorKiarie, Francis
dc.contributor.authorMwita, Peter N.
dc.date.accessioned2019-08-21T07:19:22Z
dc.date.available2019-08-21T07:19:22Z
dc.date.issued2016
dc.identifier.issn2394-578
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/4746
dc.description.abstractVarious parametric models have been designed to analyze volatility in river flow time series data. For maximum likelihood estimation these parametric methods assumes a known conditional distribution. This paper considers the problem of nonparametric estimation of critical streamflow discharge levels of a river regime based on quantile regression methodology of Koenker and Basset (1978).In particular, the paper demonstrates the use of kernel estimators for conditional quantiles resulting from a kernel estimation of conditional distribution function. It is finally proved that the estimate of the nonparametric quantile function is consistent and asymptotically normally distributed and under suitable conditions, the estimator converges uniformly with an appropriate rate.en_US
dc.language.isoen_USen_US
dc.subjectConditional quantileen_US
dc.subjectKernel estimateen_US
dc.subjectQuantile autoregressionen_US
dc.subjectConsistencyen_US
dc.subjectAsymptotic normalityen_US
dc.subjectCritical discharge level.en_US
dc.titleEstimation of Critical Streamflow Discharge Level Using Nonparametric Quantile Regression Modelen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record