• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Levy Regime-Switching Temperature Dynamics Model for Weather Derivatives

    Thumbnail
    View/Open
    Full text (1.142Mb)
    Date
    2018
    Author
    Gyamerah, Samuel Asante
    Ngare, Philip
    Ikpe, Dennis
    Metadata
    Show full item record
    Abstract
    Weather is a key production factor in agricultural crop production but at the same time, the most significant and least controllable source of peril in agriculture. These effects of weather on agricultural crop production have triggered a widespread support for weather derivatives as a means of mitigating the risk associated with climate change on agriculture. However, these products are faced with basis risk as a result of poor design and modeling of the underlying weather variable (temperature). In other to circumvent this problem, a novel time-varying mean-reversion L´evy regime-switching model is used to model the dynamics of the deseasonalized temperature dynamics. Using plots and test statistics, it is observed that the residuals of the deseasonalized temperature data are not normally distributed. To model the nonnormality in the residuals, we propose to use the hyperbolic distribution to capture the semi-heavy tails and skewness in the empirical distributions of the residuals for the shifted regime. The proposed regime-switching model has a mean reverting heteroskedastic process in the base regime and a L´evy process in the shifted regime. By using the expectation maximization algorithm, the parameters of the proposed model are estimated. The proposed model is flexible as it modelled the deseasonalized temperature data accurately.
    URI
    http://ir.mksu.ac.ke/handle/123456780/4408
    Collections
    • School of Pure and Applied Sciences [259]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV