• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Environment and Natural Resources
    • School of Environment and Natural Resources
    • School of Environment and Natural Resources
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Environment and Natural Resources
    • School of Environment and Natural Resources
    • School of Environment and Natural Resources
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A model of landslide triggering bytransient pressure waves

    Thumbnail
    View/Open
    Full Text (826.9Kb)
    Date
    2014
    Author
    Waswa, George
    Lorentz, Simon A.
    Metadata
    Show full item record
    Abstract
    Previous studies indicate that most rainfall-triggered shallow landslides are initiated by a spike in rainfall intensity, which does not usually occur at the beginning of a critical storm, within which the slide is triggered, but after several minutes (or hours) of the storm. The critical storm is also usually not positioned at the beginning of a rainfall5season, but after several days of antecedent period. Rainfall triggers landslides via rapid increase in pore water pressure, commonly associated with the change in water content. Consequently, many hydrologic pressure wave models assume that rapid pore water pressure responses are as a result of rapid infiltration of rainwater.On the contrary, this paper argues that, based on the above timings of landslide10occurrences and the knowledge that infiltration rate decays with the soil wetness, the rapid increase in pore water pressure that triggers shallow landslides is as a result ofrapid introduction of additional energy into the tension saturated (or nearly saturated)zone by the intense rainfall at the ground surface, without infiltration. Antecedent andcritical precipitations are significant in creating a tension saturated zone, necessary15for rapid transmission of the introduced energy from the ground surface to the lower soil horizons during the critical storm. These arguments are supported by a newly proposed one-dimensional diffusion mathematical model, which, when solved for the appropriate boundary conditions, can yield pore water pressure at any time and depth of a tension-saturated soil profile, without infiltration. The newly proposed diffusion20model is mathematically similar to Iverson’s model (Iverson, 2000), except that the hydraulic diffusivity parameter in the latter is substituted with a newly proposed energy diffusivity coefficient in the former. A combination of the new diffusion model and the infinite slope model can predict the stability of a shallow slope as a result of transient pore water pressure
    URI
    http://ir.mksu.ac.ke/handle/123456780/4425
    Collections
    • School of Environment and Natural Resources [101]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV