Show simple item record

dc.contributor.authorJames, Gareth
dc.contributor.authorWitten, Daniela
dc.contributor.authorHastie, Trevor
dc.contributor.authorTibshirani, Robert
dc.date.accessioned2020-04-29T07:58:52Z
dc.date.available2020-04-29T07:58:52Z
dc.date.issued2017
dc.identifier.isbn978-1-4614-7138-7
dc.identifier.urihttp://ir.mksu.ac.ke/handle/123456780/6015
dc.description.abstractStatistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems, statistical learning has become a very hot field in many scientific areas as well as marketing, finance, and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area—The Elements of Statistical Learning (ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statistics but also in related fields. One of the reasons for ESL’s popularity is its relatively accessible style. But ESL is intended for individuals with advanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less technical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illustrating how to implement each of the statistical learning methods using the popular statistical software package R. These labs provide the reader with valuable hands-on experience. This book is appropriate for advanced undergraduates or master’s students in statistics or related quantitative fields or for individuals in other disciplines who wish to use statistical learning tools to analyze their data. It can be used as a textbook for a course spanning one or two semesters.en_US
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesSpringer Texts in Statistics;
dc.subjectStatisticsen_US
dc.titleAn Introduction to Statistical Learning with Applications in Ren_US
dc.typeBooken_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record