• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling the Effect of Binding Kinetics in Spatial Drug Distribution in the Brain

    Thumbnail
    View/Open
    Full Text (16.15Mb)
    Date
    2021-07-05
    Author
    Kashaju, Nelson
    Kimathi, Mark
    Masanja, Verdiana G.
    Metadata
    Show full item record
    Abstract
    A 3-dimensional mathematical model is developed to determine the effect of drug binding kinetics on the spatial distribution of a drug within the brain. The key components, namely, transport across the blood-brain barrier (BBB), drug distribution in the brain extracellular fluid (ECF), and drug binding kinetics are coupled with the bidirectional bulk flow of the brain ECF to enhance the visualization of drug concentration in the brain. The model is developed based on the cubical volume of a brain unit, which is a union of three subdomains: the brain ECF, the BBB, and the blood plasma. The model is a set of partial differential equations and the associated initial and boundary conditions through which the drug distribution process in the mentioned subdomains is described. Effects of drug binding kinetics are investigated by varying the binding parameter values for both nonspecific and specific binding sites. All variations of binding parameter values are discussed, and the results show the improved visualization of the effect of binding kinetics in the drug distribution within the brain. For more realistic visualization, we suggest incorporating more brain components that make up the large volume of the brain tissue.
    URI
    http://ir.mksu.ac.ke/handle/123456780/8171
    Collections
    • School of Pure and Applied Sciences [259]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV