• Login
    View Item 
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Research and Publications
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical techniques for modeling extreme price dynamics in the energy market

    Thumbnail
    View/Open
    Full text (1.787Mb)
    Date
    2013
    Author
    Mbugua, L. N.
    Mwita, Peter N.
    Metadata
    Show full item record
    Abstract
    Extreme events have large impact throughout the span of engineering, science and economics. This is because extreme events often lead to failure and losses due to the nature unobservable of extra ordinary occurrences. In this context this paper focuses on appropriate statistical methods relating to a combination of quantile regression approach and extreme value theory to model the excesses. This plays a vital role in risk management. Locally, nonparametric quantile regression is used, a method that is flexible and best suited when one knows little about the functional forms of the object being estimated. The conditions are derived in order to estimate the extreme value distribution function. The threshold model of extreme values is used to circumvent the lack of adequate observation problem at the tail of the distribution function. The application of a selection of these techniques is demonstrated on the volatile fuel market. The results indicate that the method used can extract maximum possible reliable information from the data. The key attraction of this method is that it offers a set of ready made approaches to the most difficult problem of risk modeling
    URI
    http://ir.mksu.ac.ke/handle/123456780/4725
    Collections
    • School of Pure and Applied Sciences [259]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV