• Login
    View Item 
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    •   MKSU Digital Repository Home
    • Books
    • School of Pure & Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Introduction to Deep Learning

    Thumbnail
    View/Open
    Full Text (3.712Mb)
    Date
    2018
    Author
    Skansi, Sandro
    Metadata
    Show full item record
    Abstract
    This textbook contains no new scientific results, and my only contribution was to compile existing knowledge and explain it with my examples and intuition. I have made a great effort to cover everything with citations while maintaining a fluent exposition, but in the modern world of the ‘electron and the switch’ it is very hard to properly attribute all ideas, since there is an abundance of quality material online (and the online world became very dynamic thanks to the social media). I will do my best to correct any mistakes and omissions for the second edition, and all corrections and suggestions will be greatly appreciated. This book uses the feminine pronoun to refer to the reader regardless of the actual gender identity. Today, we have a highly imbalanced environment when it comes to artificial intelligence, and the use of the feminine pronoun will hopefully serve to alleviate the alienation and make the female reader feel more at home while reading this book. Throughout this book, I give historical notes on when a given idea was first discovered. I do this to credit the idea, but also to give the reader an intuitive timeline. Bear in mind that this timeline can be deceiving, since the time an idea or technique was first invented is not necessarily the time it was adopted as a technique for machine learning. This is often the case, but not always. This book is intended to be a first introduction to deep learning. Deep learning is a special kind of learning with deep artificial neural networks, although today deep learning and artificial neural networks are considered to be the same field. Artificial neural networks are a subfield of machine learning which is in turn a subfield of both statistics and artificial intelligence (AI). Artificial neural networks are vastly more popular in artificial intelligence than in statistics. Deep learning today is not happy with just addressing a subfield of a subfield, but tries to make a run for the whole AI. An increasing number of AI fields like reasoning and planning, which were once the bastions of logical AI (also called the Good Old-Fashioned AI, or GOFAI), are now being tackled successfully by deep learning. In this sense, one might say that deep learning is an approach in AI, and not just a subfield of a subfield of AI.
    URI
    http://ir.mksu.ac.ke/handle/123456780/6139
    Collections
    • School of Pure & Applied Sciences [197]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV